藍(lán)芩口服液的功效與作用和蒲地藍(lán)口服液的區(qū)別(藍(lán)芩口服液的功效與作用) js 隨機(jī)數(shù)整數(shù)(js隨機(jī)數(shù)整數(shù)) 湖州火車站附近酒店(湖州火車站) QQ飛車城邦守護(hù)獸怎么進(jìn)化(QQ飛車城邦守護(hù)獸) 韓式盤發(fā)簡單教程(韓式盤發(fā)簡單教程圖解) 地下城assertion failed錯(cuò)誤怎么辦(assertion failed怎么解決) 向量相乘坐標(biāo)公式怎么推算出來的(向量相乘坐標(biāo)公式) 拉丁舞裙服裝怎么畫(拉丁舞裙服裝怎么畫簡筆畫) 裁決之鐮怎么解除(裁決之鐮怎么辦) 10178什么意思(1017代表什么意思) 如何選擇進(jìn)口嬰兒奶粉(如何選擇進(jìn)口嬰兒奶粉牌子) EVIDENT與深圳灣實(shí)驗(yàn)室舉辦首屆EVIDENT Discovery Center生物成像主題研討 合肥歡樂島旅游攻略(合肥歡樂島旅游攻略路線) 侏儒癥的癥狀及病因(侏儒癥的癥狀) 漂白 護(hù)理牙齒如何變白?(漂白牙齒怎么漂白) 波爾多液怎么配制?(波爾多液怎么配制用來防治西瓜枯萎病) tam是什么意思?。═AM是什么意思) 手把手教你如何用百度網(wǎng)盤下載BT種子文件(百度網(wǎng)盤如何使用種子文件下載) 采訪問題怎么寫(采訪問題) 英雄聯(lián)盟如何參與MSI半決賽活動(dòng)(英雄聯(lián)盟msi比賽賽程) 架立筋圖片示意圖(架立筋圖片) 最右如何添加交友卡(最右怎么看交友卡) 鵝口瘡該如何治療(鵝口瘡該如何治療才能好) 海賊王克比頭像(海賊王克比) 怎么在機(jī)蜜租一輛特斯拉汽車?(如何租特斯拉) IE瀏覽器出錯(cuò)崩潰怎么辦?(電腦提示ie瀏覽器崩潰是什么意思) 情人節(jié)送男朋友禮物嗎(情人節(jié)送男朋友禮物) AutoCAD中制作等高線地形圖(cad中怎么畫等高線地形圖) 第二年車險(xiǎn)計(jì)算方法(第二年車險(xiǎn)計(jì)算方法怎么算) 神雕俠侶后傳第一部(神雕俠侶后傳) 不可不學(xué)的攝影技巧 七:嬰兒攝影技巧(兒童攝影拍攝技巧) 陶瓷密度天平的使用方法及詳細(xì)操作步驟(陶瓷密度天平的使用方法及詳細(xì)操作步驟圖片) 浙江杭州同濟(jì)科技職業(yè)學(xué)院(杭州同濟(jì)科技職業(yè)學(xué)院) 蛋撻的家常做法(葡式蛋撻的家常做法) 標(biāo)準(zhǔn)文獻(xiàn)檢索渠道(國內(nèi)的標(biāo)準(zhǔn)文獻(xiàn)檢索的主要途徑不包括( )) 魔獸世界海加爾山之戰(zhàn)現(xiàn)在的入口在哪?(魔獸世界海加爾山在哪里) 撻伐的意思(撻伐) 網(wǎng)易企業(yè)郵箱客戶端設(shè)置:[1]POP設(shè)置 Win7(網(wǎng)易郵箱pop服務(wù)器設(shè)置) 手機(jī)進(jìn)水怎么處理最好?(手機(jī)進(jìn)水怎么處理最好用) 價(jià)外稅名詞解釋(價(jià)外稅) 爺爺?shù)臓敔數(shù)陌职衷趺唇?爺爺?shù)臓敔數(shù)陌职衷趺唇械? 融商環(huán)球平臺(tái)PC端MT5怎么安裝與登錄(融商環(huán)球MT5) 重慶市體彩中心服務(wù)大廳怎么樣(重慶市體彩中心) 怎么做涼拌萵筍絲(怎么做涼拌萵筍絲視頻) 易烊千璽TFBOYS同款手鏈(易烊千璽項(xiàng)鏈同款) 如何去掉磁盤被寫保護(hù)?(怎么去掉磁盤被寫保護(hù)) 圈養(yǎng)羊怎么養(yǎng)#校園分享#(圈養(yǎng)羊怎么養(yǎng)視頻) 制訂和制定有什么區(qū)別呢(制訂和制定有什么區(qū)別) 胃疼怎么辦 胃疼怎樣快速止疼(胃一直疼怎么快速止疼) 動(dòng)力臂和阻力臂的畫法(動(dòng)力臂)
您的位置:首頁 >百科精選 >

初中二次函數(shù)的圖像和性質(zhì)(初中二次函數(shù))

導(dǎo)讀 關(guān)于初中二次函數(shù)的圖像和性質(zhì),初中二次函數(shù)這個(gè)問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!1、二

關(guān)于初中二次函數(shù)的圖像和性質(zhì),初中二次函數(shù)這個(gè)問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!

1、二次函數(shù) I.定義與定義表達(dá)式 一般地,自變量x和因變量y之間存在如下關(guān)系: y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的二次函數(shù)。

2、 二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

3、 II.二次函數(shù)的三種表達(dá)式 一般式:y=ax^2;+bx+c(a,b,c為常數(shù),a≠0) 頂點(diǎn)式:y=a(x-h)^2;+k [拋物線的頂點(diǎn)P(h,k)] 交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x2的圖像, 可以看出,二次函數(shù)的圖像是一條拋物線。

4、 IV.拋物線的性質(zhì) 1.拋物線是軸對(duì)稱圖形。

5、對(duì)稱軸為直線 x = -b/2a。

6、 對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

7、 特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0) 2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為 P [ -b/2a ,(4ac-b^2;)/4a ]。

8、 當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。

9、 3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

10、 當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

11、 |a|越大,則拋物線的開口越小。

12、 4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

13、 當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

14、 5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

15、 拋物線與y軸交于(0,c) 6.拋物線與x軸交點(diǎn)個(gè)數(shù) Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

16、 Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

17、 Δ= b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

18、 V.二次函數(shù)與一元二次方程 特別地,二次函數(shù)(以下稱函數(shù))y=ax^2;+bx+c, 當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程), 即ax^2;+bx+c=0 此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

19、 函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

20、 答案補(bǔ)充 畫拋物線y=ax2時(shí),應(yīng)先列表,再描點(diǎn),最后連線。

21、列表選取自變量x值時(shí)常以0為中心,選取便于計(jì)算、描點(diǎn)的整數(shù)值,描點(diǎn)連線時(shí)一定要用光滑曲線連接,并注意變化趨勢。

22、 二次函數(shù)解析式的幾種形式 (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0). (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0). (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0. 說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn) 答案補(bǔ)充 如果圖像經(jīng)過原點(diǎn),并且對(duì)稱軸是y軸,則設(shè)y=ax^2;如果對(duì)稱軸是y軸,但不過原點(diǎn),則設(shè)y=ax^2+k定義與定義表達(dá)式 一般地,自變量x和因變量y之間存在如下關(guān)系: y=ax^2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。

23、IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。

24、) 則稱y為x的二次函數(shù)。

25、 二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

26、 x是自變量,y是x的函數(shù) 二次函數(shù)的三種表達(dá)式 ①一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) ②頂點(diǎn)式[拋物線的頂點(diǎn) P(h,k) ]:y=a(x-h)^2+k ③交點(diǎn)式[僅限于與x軸有交點(diǎn) A(x1,0) 和 B(x2,0) 的拋物線]:y=a(x-x1)(x-x2) 以上3種形式可進(jìn)行如下轉(zhuǎn)化: ①一般式和頂點(diǎn)式的關(guān)系 對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交點(diǎn)式的關(guān)系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)。

本文分享完畢,希望對(duì)大家有所幫助。

標(biāo)簽:

免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!

最新文章