關(guān)于取對數(shù)求極限,取對數(shù)這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、對數(shù)的性質(zhì)及推導(dǎo) 用^表示乘方,用log(a)(b)表示以a為底,b的對數(shù) *表示乘號。
2、/表示除號 定義式: 若a^n=b(a>0且a≠1) 則n=log(a)(b) 基本性質(zhì): 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推導(dǎo) 1.這個就不用推了吧,直接由定義式可得(把定義式中的[n=log(a)(b)]帶入a^n=b) 2. MN=M*N 由基本性質(zhì)1(換掉M和N) a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)] 由指數(shù)的性質(zhì) a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因為指數(shù)函數(shù)是單調(diào)函數(shù),所以 log(a)(MN) = log(a)(M) + log(a)(N) 3.與2類似處理 MN=M/N 由基本性質(zhì)1(換掉M和N) a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)] 由指數(shù)的性質(zhì) a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因為指數(shù)函數(shù)是單調(diào)函數(shù)。
3、所以 log(a)(M/N) = log(a)(M) - log(a)(N) 4.與2類似處理 M^n=M^n 由基本性質(zhì)1(換掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指數(shù)的性質(zhì) a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因為指數(shù)函數(shù)是單調(diào)函數(shù),所以 log(a)(M^n)=nlog(a)(M) 其他性質(zhì): 性質(zhì)一:換底公式 log(a)(N)=log(b)(N) / log(b)(a) 推導(dǎo)如下 N = a^[log(a)(N)] a = b^[log(b)(a)] 綜合兩式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因為N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {這步不明白或有疑問看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a) 性質(zhì)二:(不知道什么名字) log(a^n)(b^m)=m/n*[log(a)(b)] 推導(dǎo)如下 由換底公式[lnx是log(e)(x),e稱作自然對數(shù)的底] log(a^n)(b^m)=ln(a^n) / ln(b^n) 由基本性質(zhì)4可得 log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]} 再由換底公式 log(a^n)(b^m)=m/n*[log(a)(b)] --------------------------------------------(性質(zhì)及推導(dǎo) 完 ) 公式三: log(a)(b)=1/log(b)(a) 證明如下: 由換底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b為底的對數(shù),log(b)(b)=1 =1/log(b)(a) 還可變形得: log(a)(b)*log(b)(a)=1。
本文分享完畢,希望對大家有所幫助。
標簽:
免責聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!