關(guān)于統(tǒng)計學(xué)學(xué)什么專業(yè),統(tǒng)計學(xué)學(xué)什么這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、同質(zhì)(homogeneity)與變異(variation)嚴(yán)格地講,同質(zhì)是指被研究指標(biāo)的影響因素完全相同。
2、但在醫(yī)學(xué)研究中,有些影響因素往往是難以控制的(如遺傳、營養(yǎng)等),甚至是未知的。
3、所以,在統(tǒng)計學(xué)中常把同質(zhì)理解為對研究指標(biāo)影響較大的、可以控制的主要因素盡可能相同。
4、例如研究兒童的身高時,要求性別、年齡、民族、地區(qū)等影響身高較大的、易控制的因素要相同,而不易控制的遺傳、營養(yǎng)等影響因素可以忽略。
5、同質(zhì)基礎(chǔ)上的個體差異稱為變異。
6、如同性別、同年齡、同民族、同地區(qū)的健康兒童的身高、體重不盡相同。
7、事實上,客觀世界充滿了變異,生物醫(yī)學(xué)領(lǐng)域更是如此。
8、哪里有變異,哪里就需要統(tǒng)計學(xué)。
9、若所研究的同質(zhì)群體中所有個體一模一樣,只需觀察任一個體即可,無須進(jìn)行統(tǒng)計研究。
10、2、總體(population)與樣本(sample)任何統(tǒng)計研究都必須首先確定觀察單位(observed unit),亦稱個體(individual)。
11、觀察單位是統(tǒng)計研究中最基本的單位,可以是一個人、一個家庭、一個地區(qū)、一個樣品、一個采樣點(diǎn)等。
12、總體是根據(jù)研究目的確定的同質(zhì)觀察單位的全體,或者說,是同質(zhì)的所有觀察單位某種觀察值(變量值)的集合。
13、例如欲研究山東省2002年7歲健康男孩的身高,那么,觀察對象是山東省2002年的7歲健康男孩,觀察單位是每個7歲健康男孩,變量是身高,變量值(觀察值)是身高測量值,則山東省2002年全體7歲健康男孩的身高值構(gòu)成一個總體。
14、它的同質(zhì)基礎(chǔ)是同地區(qū)、同年份、同性別、同為健康兒童。
15、總體又分為有限總體(finite population)和無限總體(infinite population)。
16、有限總體是指在某特定的時間與空間范圍內(nèi),同質(zhì)研究對象的所有觀察單位的某變量值的個數(shù)為有限個,如上例;無限總體是抽象的,無時間和空間的限制,觀察單位數(shù)是無限的,如研究碘鹽對缺碘性甲狀腺病的防治效果,該總體的同質(zhì)基礎(chǔ)是缺碘性甲狀腺病患者,同用碘鹽防治;該總體應(yīng)包括已使用和設(shè)想使用碘鹽防治的所有缺碘性甲狀腺病患者的防治效果,沒有時間和空間范圍的限制,因而觀察單位數(shù)無限,該總體為無限總體。
17、在實際工作中,所要研究的總體無論是有限的還是無限的,通常都是采用抽樣研究。
18、樣本是按照隨機(jī)化原則,從總體中抽取的有代表性的部分觀察單位的變量值的集合。
19、如從上例的有限總體(山東省2002年7歲健康男孩)中,按照隨機(jī)化原則抽取100名7歲健康男孩,他們的身高值即為樣本。
20、從總體中抽取樣本的過程為抽樣,抽樣方法有多種,詳見第14章。
21、抽樣研究的目的是用樣本信息推斷總體特征。
22、統(tǒng)計學(xué)好比是總體與樣本間的橋梁,能幫助人們設(shè)計與實施如何從總體中科學(xué)地抽取樣本,使樣本中的觀察單位數(shù)(亦稱樣本含量,sample size)恰當(dāng),信息豐富,代表性好;能幫助人們挖掘樣本中的信息,推斷總體的規(guī)律性。
23、3、資料(data)與變量(variable)及其分類總體確定之后,研究者應(yīng)對每個觀察單位的某項特征進(jìn)行測量或觀察,特征稱為變量。
24、如“身高”、“體重”、“性別”、“血型”、“療效”等。
25、變量的測定值或觀察值稱為變量值(value of variable)或觀察值(observed value),亦稱為資料。
26、按變量的值是定量的還是定性的,可將變量分為以下類型,變量的類型不同,其分布規(guī)律亦不同,對它們采用的統(tǒng)計分析方法也不同。
27、在處理資料之前,首先要分清變量類型。
28、1)數(shù)值變量(numerical variable):其變量值是定量的,表現(xiàn)為數(shù)值大小,可經(jīng)測量取得數(shù)值,多有度量衡單位。
29、如身高(cm)、體重(kg)、血壓(mmHg kPa)、脈搏(次/min)和白細(xì)胞計數(shù)(×10 9 /L)等。
30、這種由數(shù)值變量的測量值構(gòu)成的資料稱為數(shù)值變量資料,亦稱為定量資料(quantitative data)。
31、大多數(shù)的數(shù)值變量為連續(xù)型變量,如身高、體重、血壓等;而有的數(shù)值變量的測定值只能是正整數(shù),如脈搏、白細(xì)胞計數(shù)等,在醫(yī)學(xué)統(tǒng)計學(xué)中把它們也視為連續(xù)型變量。
32、2)分類變量(catagorical variable):其變量值是定性的,表現(xiàn)為互不相容的類別或?qū)傩浴?/p>
33、分類變量可分為無序變量和有序變量兩類:(1)無序分類變量(unordered categorical variable)是指所分類別或?qū)傩灾g無程度和順序的差別。
34、,它又可分為①二項分類,如性別(男、女),藥物反應(yīng)(陰性和陽性)等;②多項分類,如血型(O、A、B、AB),職業(yè)(工、農(nóng)、商、學(xué)、兵)等。
35、對于無序分類變量的分析,應(yīng)先按類別分組,清點(diǎn)各組的觀察單位數(shù),編制分類變量的頻數(shù)表,所得資料為無序分類資料,亦稱計數(shù)資料。
36、(2)有序分類變量(ordinal categorical variable)各類別之間有程度的差別。
37、如尿糖化驗結(jié)果按-、±、+、++、+++分類;療效按治愈、顯效、好轉(zhuǎn)、無效分類。
38、對于有序分類變量,應(yīng)先按等級順序分組,清點(diǎn)各組的觀察單位個數(shù),編制有序變量(各等級)的頻數(shù)表,所得資料稱為等級資料。
39、變量類型不是一成不變的,根據(jù)研究目的的需要,各類變量之間可以進(jìn)行轉(zhuǎn)化。
40、例如血紅蛋白量(g/L)原屬數(shù)值變量,若按血紅蛋白正常與偏低分為兩類時,可按二項分類資料分析;若按重度貧血、中度貧血、輕度貧血、正常、血紅蛋白增高分為五個等級時,可按等級資料分析。
41、有時亦可將分類資料數(shù)量化,如可將病人的惡心反應(yīng)以0、2、3表示,則可按數(shù)值變量資料(定量資料)分析。
42、4、隨機(jī)事件(random event)與概率(probability)醫(yī)學(xué)研究的現(xiàn)象,大多數(shù)是隨機(jī)現(xiàn)象,對隨機(jī)現(xiàn)象進(jìn)行實驗或觀察稱為隨機(jī)試驗。
43、隨機(jī)試驗的各種可能結(jié)果的集合稱為隨機(jī)事件,亦稱偶然事件,簡稱事件。
44、例如用相同治療方案治療一批某病的患者,治療轉(zhuǎn)歸可能為治愈、好轉(zhuǎn)、無效、死亡四種結(jié)果,對于一個剛?cè)朐旱幕颊撸委熀缶烤拱l(fā)生哪一種結(jié)果是不確定的,可能發(fā)生的每一種結(jié)果都是一個隨機(jī)事件。
45、對于隨機(jī)事件來說,在一次隨機(jī)試驗中,某個隨機(jī)事件可能發(fā)生也可能不發(fā)生,但在一定數(shù)量的重復(fù)試驗后,該隨機(jī)事件的發(fā)生情況是有規(guī)律可循的。
46、概率是描述隨機(jī)事件發(fā)生的可能性大小的數(shù)值,常用P表示。
47、例如,投擲一枚均勻的硬幣,隨機(jī)事件A表示“正面向上”,用 n表示投擲次數(shù);m表示隨機(jī)事件A發(fā)生的次數(shù);f表示隨機(jī)事件A發(fā)生的頻率(f=m/n),0≤m≤n, 0≤f≤1。
48、用不同的投擲次數(shù)n作隨機(jī)試驗,結(jié)果如下:m/n=8/10=0.8, 7/20=0.35,…… , 249/500=0.498, 501/1000=0.501, 10001/2000=0.5000,由此看出當(dāng)投擲次數(shù)n足夠大時,f=m/n→0.5,稱P(A)=0.5,或簡寫為:P=0.5。
49、當(dāng)n足夠大時,可以用f估計P。
50、隨機(jī)事件概率的大小在0與1之間,即0
51、P越接近1,表示某事件發(fā)生的可能性越大;P越接近0,表示某事件發(fā)生的可能性越小。
52、P=1表示事件必然發(fā)生,P=0表示事件不可能發(fā)生,它們是確定性的,不是隨機(jī)事件,但可以把它們看成隨機(jī)事件的特例。
53、若隨機(jī)事件A的概率P(A)≤a,習(xí)慣上,當(dāng)a=0.05時,就稱A為小概率事件。
54、其統(tǒng)計學(xué)意義是小概率事件在一次隨機(jī)試驗中不可能發(fā)生。
55、例如,某都市大街上疾駛的汽車撞傷行人的事件的發(fā)生概率為1/萬,但大街上仍有行人,這是因為 “被撞”事件是小概率事件,所以行人認(rèn)為自己上街這“一次試驗”中不會發(fā)生“被撞”事件。
56、“小概率”的標(biāo)準(zhǔn)a是人為規(guī)定的,對于可能引起嚴(yán)重后果的事件,如術(shù)中大出血等,可規(guī)定a=0.01,甚至更小。
本文分享完畢,希望對大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!