導(dǎo)讀 關(guān)于斜漸近線定義,斜漸近線這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!1、不一定。2、兩種情況
關(guān)于斜漸近線定義,斜漸近線這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!
1、不一定。
2、兩種情況:在同一個方向上,水平漸近線與斜漸近線一定不能同時存在。
3、2、但在不同方向上,水平漸近線與斜漸近線可能會同時存在,舉個淺顯的例子,在正無窮方向有水平漸近線,在負無窮方向則可以有斜漸近線。
4、擴展資料斜漸近線是與函數(shù)圖像無限接近,但永不相交的一條(或幾條)直線。
5、當a=0時,有l(wèi)imf(x)=b (x趨向于無窮時),此時稱y=b為函數(shù)f(x)的水平漸近線。
6、所以,水平漸近線只是斜漸近線的一種特殊情況。
7、解題時,我們可以不考慮水平漸近線,而只考慮斜漸近線和鉛直漸近線。
8、直線y=Ax+B與x軸正向夾角為α,則有PN=PM·cosα=[f(x)-(Ax+B)]cosα .按照斜漸近線定義,我們知道有l(wèi)imPN=0,而cosα是常數(shù),所以lim[f(x)-(Ax+B)]=0?.所以可得:A=lim[f(x)/x]?,B=lim?[f(x)-ax] .反之,亦然,證畢。
本文分享完畢,希望對大家有所幫助。
標簽:
免責聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!