Activex控件無法安裝解決辦法(activex控件裝入失敗) 怎么趕上早上六點(diǎn)的飛機(jī)?(怎么趕上早上六點(diǎn)的飛機(jī)航班) 魚珠膠的作用是什么(魚珠膠是什么膠水) 過年的時(shí)候 給親戚朋友們拜年要注意些啥?(過年哪些親戚需拜年) 烤香腸的做法(臺(tái)式烤香腸的做法) 大月氏讀yue還是rou(大月像高達(dá)) 菏澤商標(biāo)注冊(cè)流程有哪些?(菏澤商標(biāo)注冊(cè)流程有哪些企業(yè)) 怎樣養(yǎng)成牛奶肌(怎樣養(yǎng)成牛奶肌?) 三年級(jí)語文閱讀理解訓(xùn)練題及答案(三年級(jí)語文閱讀) 如何破解無線路由密碼(如何破解無線路由密碼設(shè)置) 深圳獅王教育(獅王教育) 手機(jī)QQ怎么免費(fèi)設(shè)置聊天背景(手機(jī)qq怎么設(shè)置聊天背景全部一樣) 品管員工自我評(píng)價(jià)(品管員工作職責(zé)) 摧枯拉朽怎么解釋(摧枯拉朽的解釋是什么) 《世界第一等》尤克里里譜-吉他譜(世界第一等吉他簡(jiǎn)譜) 炒面的做法簡(jiǎn)單好吃(炒面的做法) 拉鏈拉不動(dòng)怎么辦、有什么妙招(拉鏈拉不動(dòng)怎么辦,有什么妙招可以解決) ps的羽化是怎么使用的(ps羽化有幾種方法) pixiv加速器哪個(gè)好用(加速器哪個(gè)好用) 男人補(bǔ)腎吃什么最好(男人補(bǔ)腎吃什么最好?) win7系統(tǒng)下劍靈客戶端BNS崩潰報(bào)告錯(cuò)誤的處理(劍靈總是客戶端錯(cuò)誤) 成功人生的標(biāo)記是什么(成功人生) usdt是什么幣(usdt是什么幣是哪個(gè)的) iTunes Store是什么 iTunes Store怎么用(itunes store是什么東西) chip away是什么意思(chip是什么意思) 美發(fā)編發(fā)發(fā)型(美發(fā)編發(fā)發(fā)型女) 古詩游子吟ppt課件(游子吟古詩圖片) 蘑菇怎么拼讀(蘑菇怎么拼讀音節(jié)) 武尸奪戰(zhàn)力指數(shù)(武尸) 歐倫堡皮鞋的保養(yǎng)護(hù)理(歐倫堡皮鞋的保養(yǎng)護(hù)理是什么) 漢化補(bǔ)丁怎么用(vray漢化補(bǔ)丁怎么用) 千元以上回音壁音響推薦(回音壁音響5 1推薦) 皮凍家常做法(皮凍家常做法視頻) 推薦幾個(gè)非常好聽且適合睡覺聽的鋼琴曲(推薦幾個(gè)非常好聽且適合睡覺聽的鋼琴曲子) 減肥器材抖抖機(jī)有用嗎(減肥器材) vs是什么意思(vs是什么意思 漢語) 創(chuàng)建在線考試需要用到什么軟件?(在線考試的軟件有哪些) 葫蘆絲吹奏方法技巧?(葫蘆絲吹奏方法) 練習(xí)倒立的好方法(練倒立的技巧) 油茶的做法(油茶的做法和功效與作用) 《口袋西游》游戲評(píng)測(cè)(《口袋西游》游戲評(píng)測(cè)怎么樣) 喝白酒有哪些好處?(喝白酒有哪些好處呢) 初三作文 華為手機(jī)文件夾加密碼如何設(shè)置(華為手機(jī)文件夾加密碼如何設(shè)置密碼保護(hù)) 黃花梨木圖片大全 黃花梨木鑒別技巧(黃花梨木的鑒別方法) 四面體的體積公式有哪些(四面體的體積公式) 侍弄怎么拼音(侍弄拼音怎么讀音) 移動(dòng)用戶網(wǎng)上怎么查詢?cè)捹M(fèi)賬單?(移動(dòng)用戶網(wǎng)上怎么查詢?cè)捹M(fèi)賬單余額) 國(guó)資委是干什么的(國(guó)資委是干啥的) 手機(jī)安全模式如何解除(手機(jī)安全模式如何解除微信)
您的位置:首頁 >要聞 >

拉氏變換公式中s代表什么(拉氏變換公式)

導(dǎo)讀 關(guān)于拉氏變換公式中s代表什么,拉氏變換公式這個(gè)問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!1、拉氏

關(guān)于拉氏變換公式中s代表什么,拉氏變換公式這個(gè)問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!

1、拉氏變換及反變換公式 拉氏變換及反變換公式1. 拉氏變換的基本性質(zhì) 1 線性定理 齊次性 疊加性L[ af (t )] = aF ( s )L[ f 1 (t ) ± f 2 (t )] = F1 ( s ) ± F2 ( s )df (t ) ] = sF ( s ) ? f ( 0 ) dt d 2 f (t ) L[ ] = s 2 F ( s ) ? sf ( 0 ) ? f ′ 0) ( dt 2 ? L[ L[ d n f (t ) ] = s n F (s) ? dt n d k ?1 f ( t ) f ( k ?1) ( t ) = dt k ?12微分定理一般形式∑sk =1nn?kf( k ?1 )(0)初始條件為 0 時(shí)d n f (t ) L[ ] = s n F ( s) n dtL[ ∫ f (t )dt ] = F ( s ) [ ∫ f (t )dt ]t = 0 + s s2 F ( s ) [ ∫ f (t )dt ]t = 0 [ ∫∫ f (t )(dt ) ]t = 0 + + s2 s2 s一般形式 3 積分定理L[ ∫∫ f (t )(dt )2 ] = ?共n個(gè) n共n個(gè)F (s) n 1 L[ ∫ ?∫ f (t )(dt ) ] = n + ∑ n ? k +1 [ ∫ ?∫ f (t )(dt )n ]t = 0 s k =1 s共 n個(gè)初始條件為 0 時(shí) 4 5 6 7 8 延遲定理(或稱 t 域平移定理) 衰減定理(或稱 s 域平移定理) 終值定理 初值定理 卷積定理L[ ∫ ?∫ f (t )(dt ) n ] =F (s) snL[ f (t ? T )1(t ? T )] = e ?Ts F ( s)L[ f (t )e ? at ] = F ( s + a)lim f (t ) = lim sF ( s )t →∞ s →0lim f (t ) = lim sF ( s )t →0 s →∞L[ ∫ f1 (t ? τ ) f 2 (τ )dτ ] = L[ ∫ f1 (t ) f 2 (t ? τ )dτ ] = F1 ( s) F2 ( s)0 0tt12. 常用函數(shù)的拉氏變換和 z 變換表 序 號(hào) 拉氏變換 E(s) 1 時(shí)間函數(shù) e(t) δ(t)δ T (t ) = ∑ δ (t ? nT )n=0 ∞Z 變換 E(z) 1z z ?11 2 3 4 5 6 7 8 9 10 11 12 13 14 151 1 ? e ?Ts1 s1(t )z z ?11 s21 s3tt2 2Tz ( z ? 1) 2T 2 z ( z + 1) 2( z ? 1) 31 s n +11 s+atn n!lim(?1) n ? n z ( ) n a →0 n! ?a z ? e ?aTz z ? e ? aT。

本文分享完畢,希望對(duì)大家有所幫助。

標(biāo)簽:

免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!

最新文章