霽彩華年,因夢同行—— 慶祝深圳霽因生物醫(yī)藥轉(zhuǎn)化研究院成立十周年 情緒益生菌PS128助力孤獨癥治療,權(quán)威研究顯示可顯著改善孤獨癥癥狀 PARP抑制劑氟唑帕利助力患者從維持治療中獲益,改寫晚期卵巢癌治療格局 新東方智慧教育發(fā)布“東方創(chuàng)科人工智能開發(fā)板2.0” 精準(zhǔn)血型 守護生命 腸道超聲可用于檢測兒童炎癥性腸病 迷走神經(jīng)刺激對抑郁癥有積極治療作用 探索梅尼埃病中 MRI 描述符的性能和最佳組合 自閉癥患者中癡呆癥的患病率增加 超聲波 3D 打印輔助神經(jīng)源性膀胱的骶神經(jīng)調(diào)節(jié) 胃食管反流病患者耳鳴風(fēng)險增加 間質(zhì)性膀胱炎和膀胱疼痛綜合征的臨床表現(xiàn)不同 研究表明 多語言能力可提高自閉癥兒童的認(rèn)知能力 科學(xué)家揭示人類與小鼠在主要癌癥免疫治療靶點上的驚人差異 利用正確的成像標(biāo)準(zhǔn)改善對腦癌結(jié)果的預(yù)測 地中海飲食通過腸道細(xì)菌變化改善記憶力 讓你在 2025 年更健康的 7 種驚人方法 為什么有些人的頭發(fā)和指甲比其他人長得快 物質(zhì)的使用會改變大腦的結(jié)構(gòu)嗎 飲酒如何影響你的健康 20個月,3大平臺,300倍!元育生物以全左旋蝦青素引領(lǐng)合成生物新紀(jì)元 從技術(shù)困局到創(chuàng)新錨點,天與帶來了一場屬于養(yǎng)老的“情緒共振” “華潤系”大動作落槌!昆藥集團完成收購華潤圣火 十七載“冬至滋補節(jié)”,東阿阿膠將品牌營銷推向新高峰 150個國家承認(rèn)巴勒斯坦國意味著什么 中國海警對非法闖仁愛礁海域菲船只采取管制措施 國家四級救災(zāi)應(yīng)急響應(yīng)啟動 涉及福建、廣東 女生查分查出608分后,上演取得理想成績“三件套” 多吃紅色的櫻桃能補鐵、補血? 中國代表三次回?fù)裘婪焦糁肛?zé) 探索精神健康前沿|情緒益生菌PS128閃耀寧波醫(yī)學(xué)盛會,彰顯科研實力 圣美生物:以科技之光,引領(lǐng)肺癌早篩早診新時代 神經(jīng)干細(xì)胞移植有望治療慢性脊髓損傷 一種簡單的血漿生物標(biāo)志物可以預(yù)測患有肥胖癥青少年的肝纖維化 嬰兒的心跳可能是他們說出第一句話的關(guān)鍵 研究發(fā)現(xiàn)基因檢測正成為主流 血液測試顯示心臟存在排斥風(fēng)險 無需提供組織樣本 假體材料有助于減少靜脈導(dǎo)管感染 研究發(fā)現(xiàn)團隊運動對孩子的大腦有很大幫助 研究人員開發(fā)出診斷 治療心肌炎的決策途徑 兩項研究評估了醫(yī)療保健領(lǐng)域人工智能工具的發(fā)展 利用女子籃球隊探索足部生物力學(xué) 抑制前列腺癌細(xì)胞:雄激素受體可以改變前列腺的正常生長 肽抗原上的反應(yīng)性半胱氨酸可能開啟新的癌癥免疫治療可能性 研究人員發(fā)現(xiàn)新基因療法可以緩解慢性疼痛 研究人員揭示 tisa-cel 療法治療復(fù)發(fā)或難治性 B 細(xì)胞淋巴瘤的風(fēng)險 適量飲酒可降低高危人群罹患嚴(yán)重心血管疾病的風(fēng)險 STIF科創(chuàng)節(jié)揭曉獎項,新東方智慧教育榮膺雙料殊榮 中科美菱發(fā)布2025年產(chǎn)品戰(zhàn)略布局!技術(shù)方向支撐產(chǎn)品生態(tài)縱深! 從雪域高原到用戶口碑 —— 復(fù)方塞隆膠囊的品質(zhì)之旅
您的位置:首頁 >要聞 >

什么是反函數(shù)公式(什么是反函數(shù))

關(guān)于什么是反函數(shù)公式,什么是反函數(shù)這個問題很多朋友還不知道,今天小六來為大家解答以上的問題,現(xiàn)在讓我們一起來看看吧!

1、一般地,如果x與y關(guān)于某種對應(yīng)關(guān)系f(x)相對應(yīng),y=f(x)。

2、則y=f(x)的反函數(shù)為y=f(x)^-1。

3、   存在反函數(shù)的條件是原函數(shù)必須是一一對應(yīng)的(不一定是整個數(shù)域內(nèi)的)   【反函數(shù)的性質(zhì)】  ?。?)互為反函數(shù)的兩個函數(shù)的圖象關(guān)于直線y=x對稱;   (2)函數(shù)存在反函數(shù)的充要條件是,函數(shù)的定義域與值域是一一映射;  ?。?)一個函數(shù)與它的反函數(shù)在相應(yīng)區(qū)間上單調(diào)性一致;  ?。?)一般的偶函數(shù)一定不存在反函數(shù)(但一種特殊的偶函數(shù)存在反函數(shù),例f(x)=a(x=0)它的反函數(shù)是f(x)=0(x=a)這是一種極特殊的函數(shù)),奇函數(shù)不一定存在反函數(shù)。

4、關(guān)于y軸對稱的函數(shù)一定沒有反函數(shù)。

5、若一個奇函數(shù)存在反函數(shù),則它的反函數(shù)也是奇函數(shù)。

6、   (5)一切隱函數(shù)具有反函數(shù);   (6)一段連續(xù)的函數(shù)的單調(diào)性在對應(yīng)區(qū)間內(nèi)具有一致性;  ?。?)嚴(yán)格增(減)的函數(shù)一定有嚴(yán)格增(減)的反函數(shù)【反函數(shù)存在定理】。

7、  ?。?)反函數(shù)是相互的  ?。?)定義域、值域相反對應(yīng)法則互逆(三反)   (10)原函數(shù)一旦確定,反函數(shù)即確定(三定)   例:y=2x-1的反函數(shù)是y=0.5x+0.5   y=2^x的反函數(shù)是y=log2 x   例題:求函數(shù)3x-2的反函數(shù)   解:y=3x-2的定義域為R,值域為R.   由y=3x-2解得   x=1/3(y+2)   將x,y互換,則所求y=3x-2的反函數(shù)是   y=1/3(x+2) [編輯本段]⒈ 反函數(shù)的定義  一般地,設(shè)函數(shù)y=f(x)(x∈A)的值域是C,根據(jù)這個函數(shù)中x,y 的關(guān)系,用y把x表示出,得到x= f(y). 若對于y在C中的任何一個值,通過x= f(y),x在A中都有唯一的值和它對應(yīng),那么,x= f(y)就表示y是自變量,x是自變量y的函數(shù),這樣的函數(shù)x= f(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù),記作x=f^-1(y). 反函數(shù)y=f^-1(x)的定義域、值域分別是函數(shù)y=f(x)的值域、定義域.   說明:⑴在函數(shù)x=f^-1(y)中,y是自變量,x是函數(shù),但習(xí)慣上,我們一般用x表示自變量,用y 表示函數(shù),為此我們常常對調(diào)函數(shù)x=f^-1(y)中的字母x,y,把它改寫成y=f^-1(x),今后凡無特別說明,函數(shù)y=f(x)的反函數(shù)都采用這種經(jīng)過改寫的形式.  ?、品春瘮?shù)也是函數(shù),因為它符合函數(shù)的定義. 從反函數(shù)的定義可知,對于任意一個函數(shù)y=f(x)來說,不一定有反函數(shù),若函數(shù)y=f(x)有反函數(shù)y=f^-1(x),那么函數(shù)y=f^-1(x)的反函數(shù)就是y=f(x),這就是說,函數(shù)y=f(x)與y=f^-1(x)互為反函數(shù).  ?、菑挠成涞亩x可知,函數(shù)y=f(x)是定義域A到值域C的映射,而它的反函數(shù)y=f^-1(x)是集合C到集合A的映射,因此,函數(shù)y=f(x)的定義域正好是它的反函數(shù)y=f^-1(x)的值域;函數(shù)y=f(x)的值域正好是它的反函數(shù)y=f^-1(x)的定義域(如下表):   函數(shù)y=f(x) 反函數(shù)y=f^-1(x)   定義域 A C   值 域 C A   ⑷上述定義用“逆”映射概念可敘述為:   若確定函數(shù)y=f(x)的映射f是函數(shù)的定義域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所確定的函數(shù)x=f^-1(x)就叫做函數(shù)y=f(x)的反函數(shù). 反函數(shù)x=f^-1(x)的定義域、值域分別是函數(shù)y=f(x)的值域、定義域.   開始的兩個例子:s=vt記為f(t)=vt,則它的反函數(shù)就可以寫為f^-1(t)=t/v,同樣y=2x+6記為f(x)=2x+6,則它的反函數(shù)為:f^-1(x)=x/2-3.   有時是反函數(shù)需要進行分類討論,如:f(x)=X+1/X,需將X進行分類討論:在X大于0時的情況,X小于0的情況,多是要注意的。

8、一般分?jǐn)?shù)函數(shù)的反函數(shù)的表示為y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a   反函數(shù)的應(yīng)用:   直接求函數(shù)的值域困難時,可以通過求其原函數(shù)的定義域來確定原函數(shù)的值域,求反函數(shù)的步驟是這樣的   1.先求出原函數(shù)的值域,因為原函數(shù)的值域就是反函數(shù)的定義域  ?。ㄎ覀冎篮瘮?shù)的三要素是定義域,值域,對應(yīng)法則,所以先求反函數(shù)的定義域是球反函數(shù)的第一步)   2.反解x,也就是用y來表示x   3.改寫,交換位置,也就是把x改成y,把y改成x  一般地,如果x與y關(guān)于某種對應(yīng)關(guān)系f(x)相對應(yīng),y=f(x),則y=f(x)的反函數(shù)為y=f -1(x)。

9、存在反函數(shù)的條件是原函數(shù)必須是一一對應(yīng)的(不一定是整個數(shù)域內(nèi)的。

本文分享完畢,希望對大家有所幫助。

標(biāo)簽:

免責(zé)聲明:本文由用戶上傳,與本網(wǎng)站立場無關(guān)。財經(jīng)信息僅供讀者參考,并不構(gòu)成投資建議。投資者據(jù)此操作,風(fēng)險自擔(dān)。 如有侵權(quán)請聯(lián)系刪除!

最新文章